
Studying Silent Faults in Scientific
Software using Program Mutation

Daniel Hook Diane Kelly
Queen’s University The Royal Military College of Canada

hook@cs.queensu.ca kelly-d@rmc.ca

Abstract

Highly accurate scientific software requires valid scientific
models, accurate numerical methods, and highly correct
code. Software engineers specialize in testing code, but
the lack of test oracles and the existence of “silent faults”
makes it very difficult to test the correctness of scientific
code. We suggest that code mutation can be used to study
code faults in scientific software in the hope that software
engineers can use the derived knowledge to make valuable
contributions to the quality of scientific software and the as-
sociated research. This poster highlights challenges of sci-
entific software testing before briefly describing the muta-
tion testing process and providing sample results from mu-
tation sensitivity tests.

1. Introduction

SCIENTIFIC software must be sufficiently accurate; all
other quality attributes of scientific programs are of sec-

ondary importance. If the error (i.e., the distance from the
“true” answer) in the output of a scientific program is not
bound within a specified tolerance then the program cannot
be trusted. However, due to the lack of a testing oracle, it
is often very difficult to determine if a scientific program’s
outputs fall within an acceptable range when the software
is under test.

Therefore, instead of evaluating and insuring accuracy by
using traditional software testing techniques, scientific soft-
ware must be carefully scrutinized to determine if confi-
dence in the program is warranted. This scrutinization can
be understood to take place from three distinct views. First,
the scientific view is used to validate the theories and as-
sumptions that are used to model real world phenomena
in the computational domain. Second, the numerical anal-
ysis view is used to verify that the algorithms used in the
software are suitable for working with the scientific models.
Finally, the code view is used to scrutinize the source code
to check that it is (reasonably) correct. It is by working in
the code view that software engineers can help improve the
quality of scientific software projects. However, before soft-
ware engineers can involve themselves in these activities it
is important that they understand the novel problems and
concerns that arise when testing scientific software.

(a) (b)

Figure 1: (a) shows the scope of the three quality “views”
while (b) shows the dependency that exists among them.
To illustrate how this is meant to be understood: code scru-
tinization tells the developer nothing about the scientific va-
lidity of the program (because scientific validity is not within
the scope of code scrutinization), but accurate computa-
tional science is dependent on highly correct code (because
code underlies science in the hierarchy).

Silent faults are of particular concern when testing scientific
software because they are difficult to detect and can impact
scientific software quality in significant and unappreciated
ways. Silent faults can cause silent failures, i.e., they can
cause a program to behave in an undesirable way that is
not accompanied by an obvious symptom such as an error
message or a crash. Silent failures can seriously degrade
the accuracy (i.e., increase the error) of a program’s output
while remaining unnoticed by a tester because the desired
output value is unknown. Hatton does not use the term
“silent fault” in [1], but his work demonstrates that accuracy
degradation due to unnoticed code faults is a severe prob-
lem in scientific software.

What is needed is a way to evaluate the ease of use and ef-
fectiveness of various testing techniques—both established
and novel—when they are applied to the task of detecting
silent faults. We feel that mutation analysis is well-suited to
this research for a number of reasons:
• It is a well established and studied process that has ex-

isted for over 30 years (cf. [2]).

• The oracle problem is avoided because the unmutated
program is (temporarily) assumed to be correct.
• It can be used to demonstrate the insufficiency of the test

suites that scientists use to test their software.
• As a consequence of the coupling effect, the simple syn-

tactic errors introduced during mutation can be used to
study detection methods for more complex faults (cf. [2]).
• It a technique that is largely automated and leaves an

easy to record “paper trail”; this helps scientists improve
the reproducibility of their test practices.

2. Mutation Testing

The following terminology and notation is used to discuss
mutation testing:
•Mutation: a syntactic change to a program statement.
•Mutation Operator (φ): a rule that is applied to a pro-

gram statement to generate mutations. A set of mutation
operators is denoted by Φ.
•Mutation Target (P0): a program that is to be mutated.
•Mutant (Pm): a program which is syntactically identical to
P0 except that one of its statements contains a mutation.
When Φ is applied to P0 the set of generated mutants
Φ(P0) is denoted by PM .
• Test (tX(P0, Pm)): a function that uses some specified

valid input X for P0 to compare Pm(X) with P0(X) and
output a corresponding pass or fail. A set of tests se-
lected by a tester is denoted by T .
•Killed: if tX(P0, Pm) = fail then Pm is said to have been

killed by tX .
• Survivors (ST): the set of mutants not killed by some
T , i.e., ST = {Pm ∈ PM such that tX(P0, Pm) = pass
∀tX ∈ T}.
• Equivalent Mutant: if Pm(X) = P0(X) ∀X then Pm is

said to be equivalent to P0.

A mutation test consists of the following steps:
1. Φ is applied to P0 to generate PM .
2. Every Pm ∈ PM is evaluated using every tX ∈ T to de-

termine ST .
3. Equivalent mutants are removed from ST .
4. If |ST | > 0 then new tX are added to T in an attempt to

kill all Pm ∈ ST .

Geist et al. claim that, “If the software contains a fault, it
is likely that there is a mutant that can only be killed by
a test case that also reveals the fault.”[3] If this statement
holds—and evidence indicates that it does when testing
non-scientific software—then mutation testing will be effec-
tive at finding faults.

However, we are hesitant to assume that established muta-
tion testing techniques will be effective at testing scientific
software. Established practices often use strict equality,
but, in a scientific context, strict equality is often far too
strict. For example, if a scientific program P0 must be ac-
curate within 10w and P0(X) − Pm(X) = 10w−1 then should
Pm be considered equivalent or not? To make matters even
worse, it is rare that the required accuracy of a scientific
program can be specified precisely. There are many cases
when the only available judge of accuracy is the “common
sense” of a scientist, i.e., the output is judged by whether
or not it “looks about right.”

Therefore, we would suggest that code mutation should not
be used as a fault detection tool (at least not initially), but
rather as tool that allows developers to assess a program’s
sensitivity to certain classes of faults.

3. Sensitivity Testing

In order to better understand the nature of faults and fail-
ures in scientific software, we suggest a new approach to
mutation analysis: instead of using the mutants to assess
the adequacy of a test set we have started using the mu-
tants to assess the fault sensitivity of programs. In order to
do this we have modified the behaviour of the test functions.
Traditional mutation tests use the following mapping:

tX(P0, Pm)→ {pass, fail}
We suggest that tX be used to measure mutation error in-
stead, e.g.:

tX(P0, Pm) =
|Pm(X)− P0(X)|

|P0(X)|

where P0 and Pm output numerical results (if this is not the
case then a different measure can be applied).

Figure 2 shows some sample histograms that can be pro-
duced using this error analysis.

(a) Sensitivity Results for myclip.m

(b) Sensitivity Results for GEPivShow.m

Figure 2: (a) gives sensitivity results for a matrix condi-
tioning function; (b) gives sensitivity results for a function
that solves a system of equations using Gaussian elimina-
tion with pivoting. It is interesting to note the different fea-
tures of the histograms: using randomly selected inputs,
myclip exhibits a much high proportion of silent errors
than GEPivShow.

By measuring the error in the outputs of mutants it is pos-
sible to characterize the sensitivity of the mutation target to
code faults. By comparing the sensitivity results with the
requirements of the software it may help developers and
testers to better target their quality assurance activities,
and we believe it will help illustrate the unique problems
that are encountered when testing scientific software—
problems that are in urgent need of study.

4. Current and Future Work

In order to assess the effectiveness of mutation testing as
a scientific software testing technique we partnered with a
space scientist who is developing satellite tracking functions
using MATLAB. In order to test this MATLAB code, Daniel
Hook constructed a mutation tester for MATLAB called
MATmute (available at matmute.sourceforge.net).
Preliminary results indicate that MATmute is helping the
space scientist find omissions in his test suites, and our
sensitivity analyses have demonstrated that silent errors
need to be given more attention.

As we apply the MATmute systems we are finding that our
work is opening up many potential avenues of exploration.
Scientists and software engineers have drifted apart, we
feel its time to start bringing them back together.

References

[1] Les Hatton and Andy Roberts. How accurate is scientific
software? IEEE Transactions on Software Engineering,
20:10, pp. 786–797, 1994.

[2] A. Jefferson Offutt and Roland H. Untch. Mutation 2000:
uniting the orthogonal. Mutation testing for the new cen-
tury, Kluwer Academic Publishers, Norwell, MA, USA,
pp. 34–44, 2001.

[3] Robert Geist, A. Jefferson Offutt, and Frederick C. Har-
ris, Jr. Estimation and enhancement of real-time soft-
ware reliability through mutation analysis. IEEE Trans-
actions on Computers, 41:5, pp. 550–558, 1992.

CASCON 2008, IBM Centers for Advanced Studies Conference, October 27–30 2008, Richmond Hill, ON, Canada Work funded by NSERC and ARP.

